New Paper: Personal clashes and Status in Wikipedia Edit Wars

Our study on disagreement in Wikipedia was just published in Scientific Reports (impact factor 5.2). In this study, we find that disagreement and conflict in Wikipedia follow specific patterns. We use complex network methods to identify three kinds of typical negative interactions: an editor confronts another editor repeatedly, an editor confronts back an equally experienced attacker, and less experienced editors confront someone else’s attacker.

Disagreement and conflict are a fact of social life but we do not like to disclose publicly whom we dislike. This poses a challenge for scientists, as we rarely have records of negative social interactions.

To circumvent this problem, we investigate when and with whom Wikipedia users edit articles. We analyze more than 4.6 million edits in 13 different language editions of Wikipedia in the period 2001-2011. We identify when an editor undoes the contribution by another editor and created a network of these “reverts”.

A revert may be intended to improve the content in the article but may also indicate a negative social interaction among the editors involved. To see if the latter is the case, we analyze how often and how fast pairs of reverts occur compared to a null model. The null model removes any individual patterns of activity but preserves important characteristics of the community. It preserves the community structure centered around articles and topics and the natural irregularity of activity due to editors being in the same time zone or due to the occurrence of news-worthy events.

Using this method, we discover that certain interactions occur more often and during shorter time intervals than one would expect from the null model. We find that Wikipedia editors systematically revert the same person, revert back their reverter, and come to defend a reverted editor beyond what would be needed just to improve and maintain the encyclopedia objectively. In addition, we analyze the editors’ status and seniority as measured by the number of article edits they have completed. This reveals that editors with equal status are more likely to respond to reverts and lower-status editors are more likely to revert someone else’s reverter, presumably to make friends and gain some social capital.

We conclude that the discovered interactions demonstrate that social processes interfere with how knowledge is negotiated. Large-scale collaboration by volunteers online provides much of the information we obtain and the software products we use today. The repeated interactions of these volunteers give rise to communities with shared identity and practice. But the social interactions in these communities can in turn affect knowledge production. Such interferences may induce biases and subjectivities into the information we rely on.